

Discovering Descriptive Tile Trees

Nikolaj Tatti, Jilles Vreeken

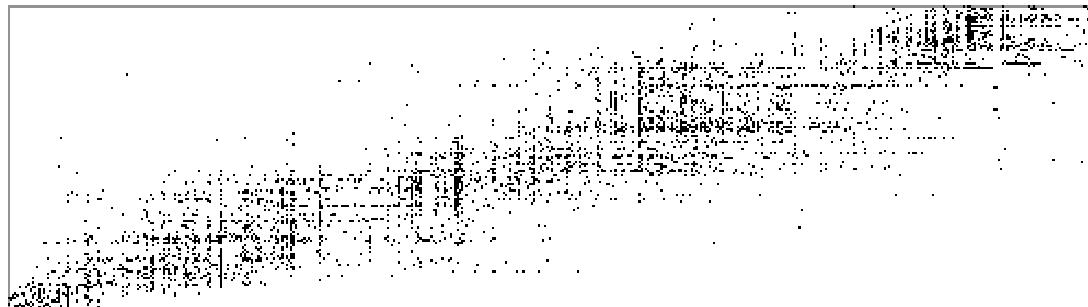
nikolaj.tatti@ua.ac.be, jilles.vreeken@ua.ac.be

ADReM, University of Antwerp, Belgium

What do we want

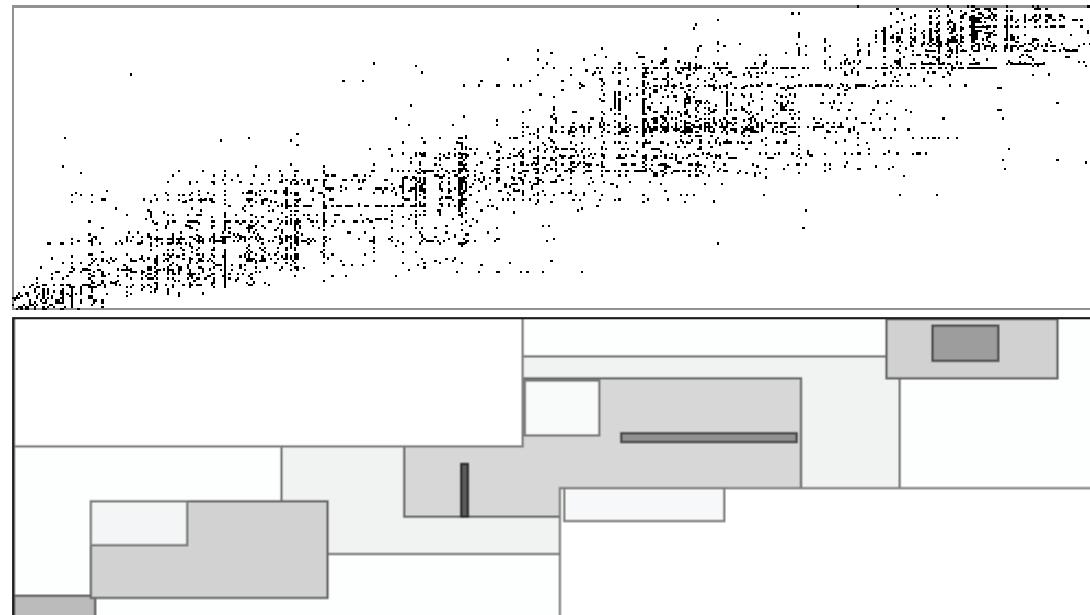
Example

- binary data of fossils
- 139 genera, 501 sites
- $D(x, y)$ is 1 if fossil x was found at site y
- sites and genera has a natural order, time



What do we want

- we want to describe where are the 1s / 0s
- we describe the distribution with tiles
- we allow exception tiles within tiles (and exceptions of exceptions..)



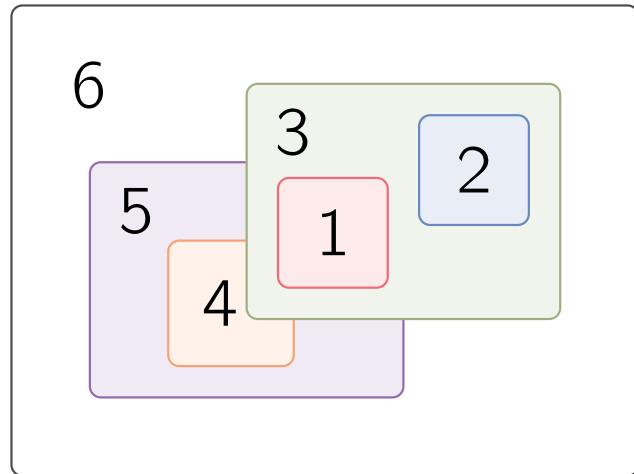
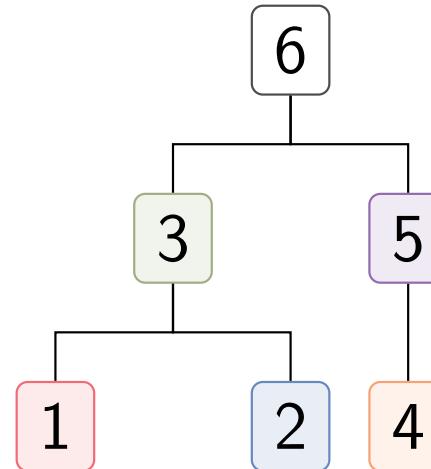
What's the catch

- data needs to be ordered, both features and data points
- not all data have meaningful orders...
 - ...but if does, it is silly not to use it
- if order is not known, we can find it with spectral techniques
- in return we get
 - polynomial algorithms
 - visualization techniques

Tile trees

Tile trees

- a tile is a consecutive submatrix of data
- tile tree is a tree of tiles (children are ordered)
- a child is a subtile of its parent
- root contains the whole data
- children and earlier siblings cover the data first



Scoring tile trees

- each tile is represented by a Bernoulli random variable
(Gionis et al. 2004)
- negative log-likelihood + MDL to control overfitting
- prefers
 - sparse or dense tiles
 - tiles that are significantly different from their parent tiles

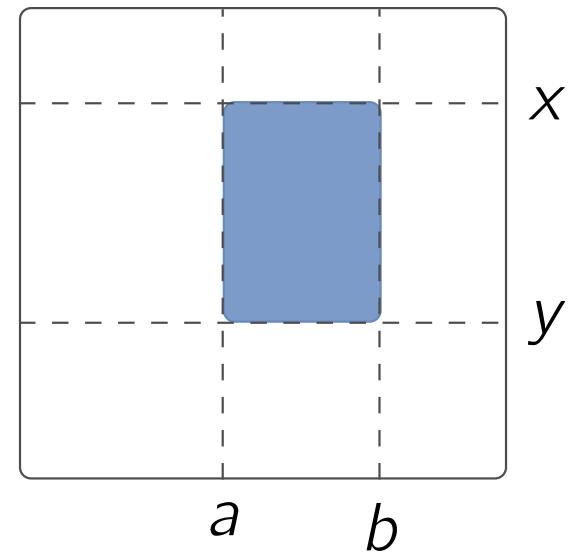
Finding a good tree

- the search space contains all possible tile trees
- we cannot enumerate all trees
- doesn't seem to have any structure that we can exploit
- we resort to greedy heuristics
 - find the optimal subtile
 - recurse until score cannot improve

Finding optimal subtile

Naive approach

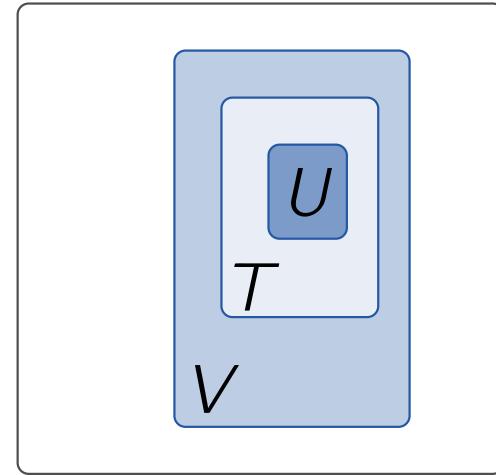
```
1 foreach  $b = 1, \dots, N$  do  
2   foreach  $a = 1, \dots, b$  do  
3     foreach  $y = 1, \dots, M$  do  
4       foreach  $x = 1, \dots, y$  do  
5         test tile  $(x, y) \times (a, b);$ 
```



- needs $\Theta(M^2N^2)$ time
- we can improve this to $\Theta(NM \min(N, M))$ time by replacing the last for-loop

Key Theorem

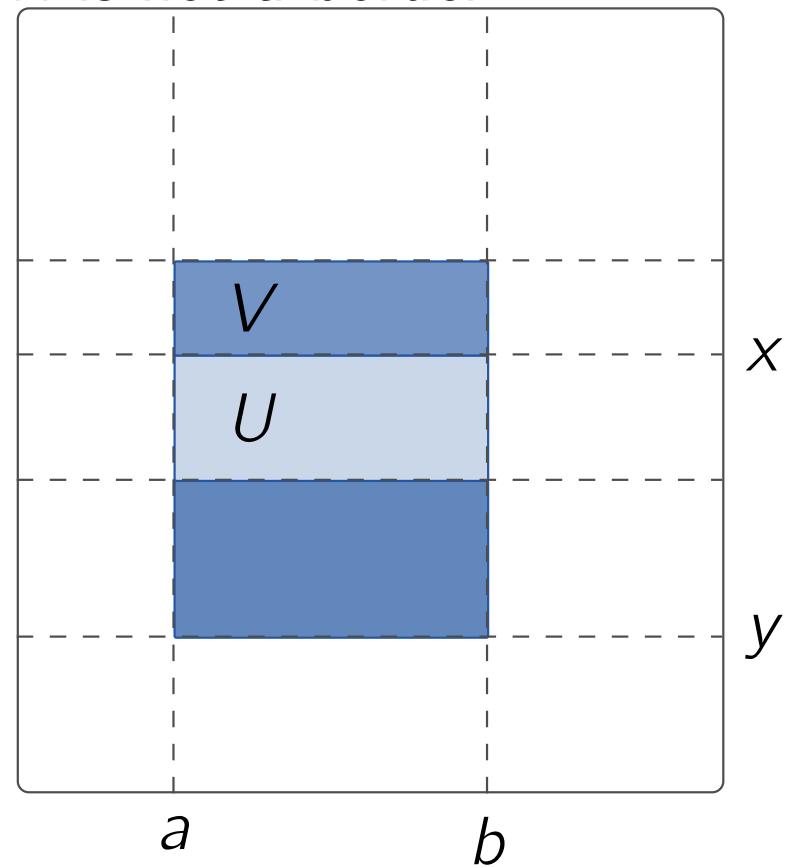
- let T be a dense tile
- let $U \subset T$ be a subtile
- let $T \subset V$ be a supertile
- if $\text{dens}(V \setminus T) \geq \text{dens}(T \setminus U)$
 - either U or V is as good as T
 - ignore T



Borders

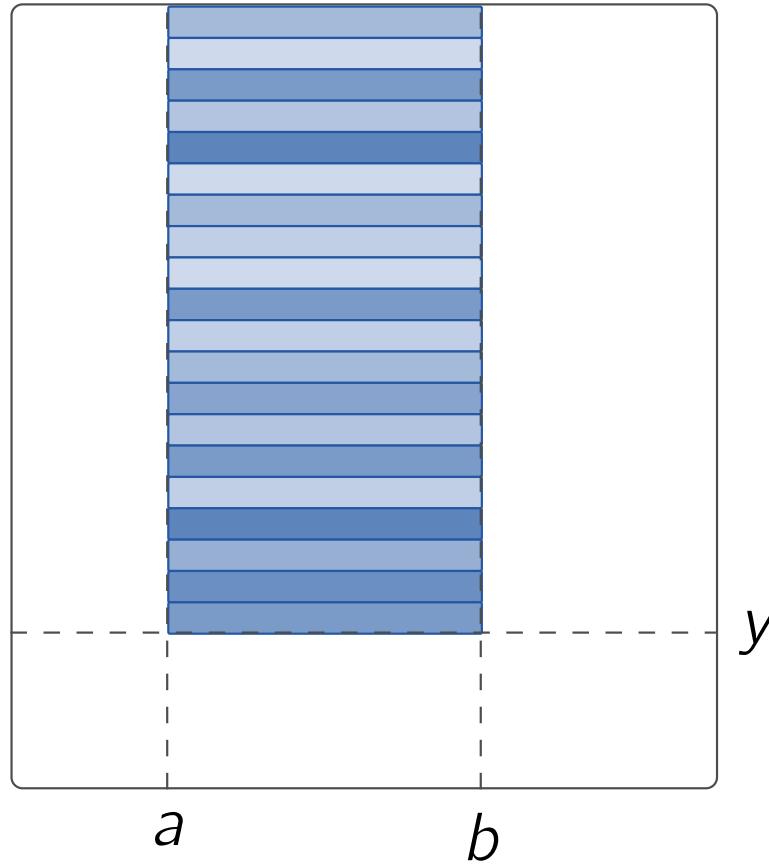
- fix a, b
- x is not a border of y if $\text{dens}(V) \geq \text{dens}(U)$
- we only need to check $x \in \text{borders}(y)$

x is not a border

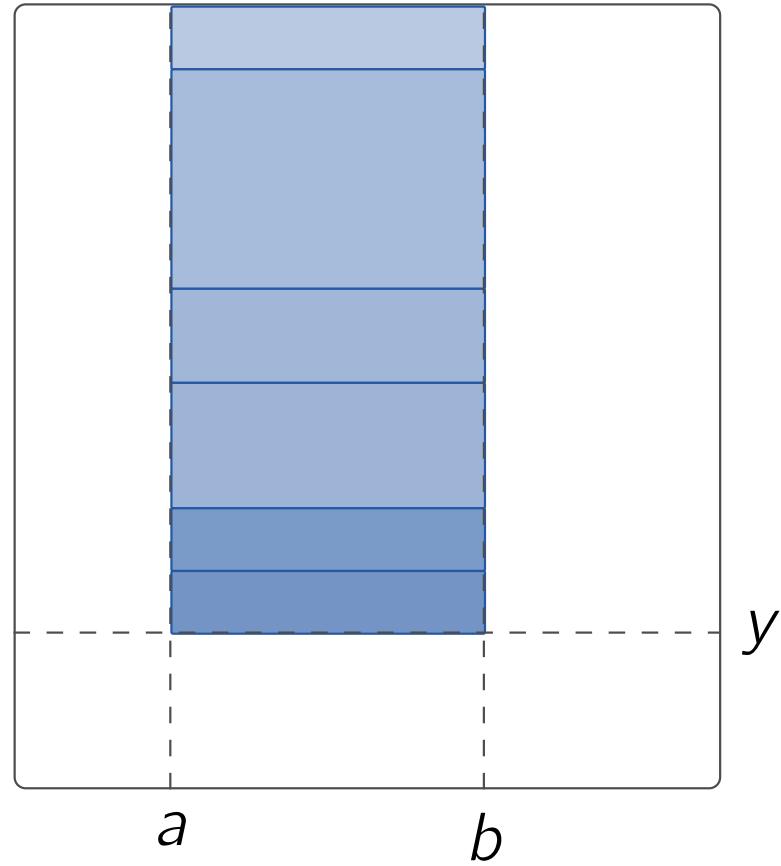


Borders

20 candidates



6 borders

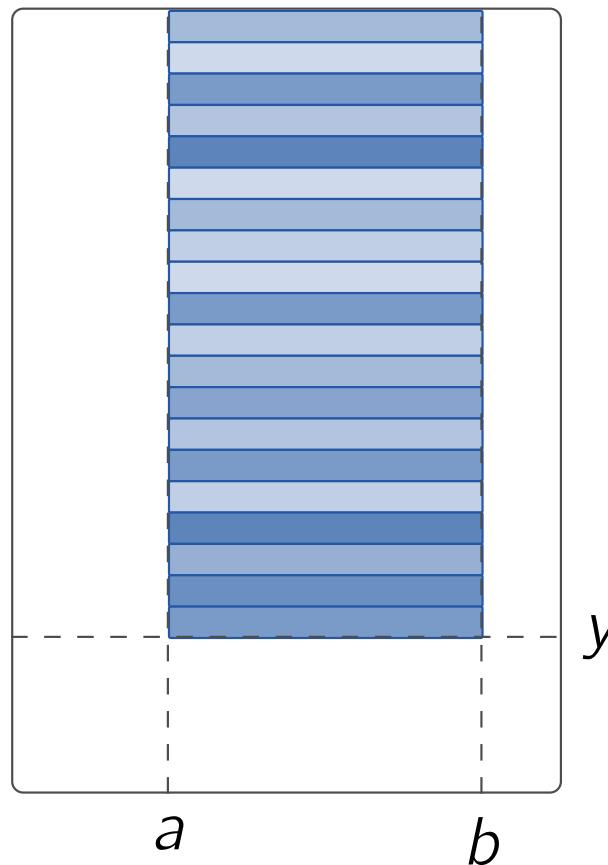
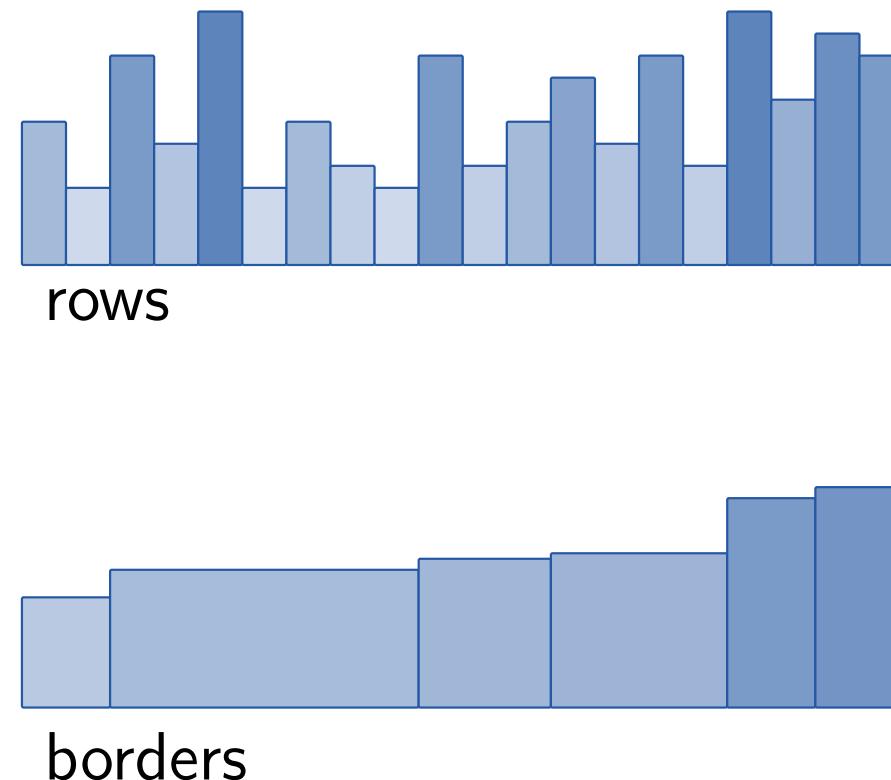


Updating borders

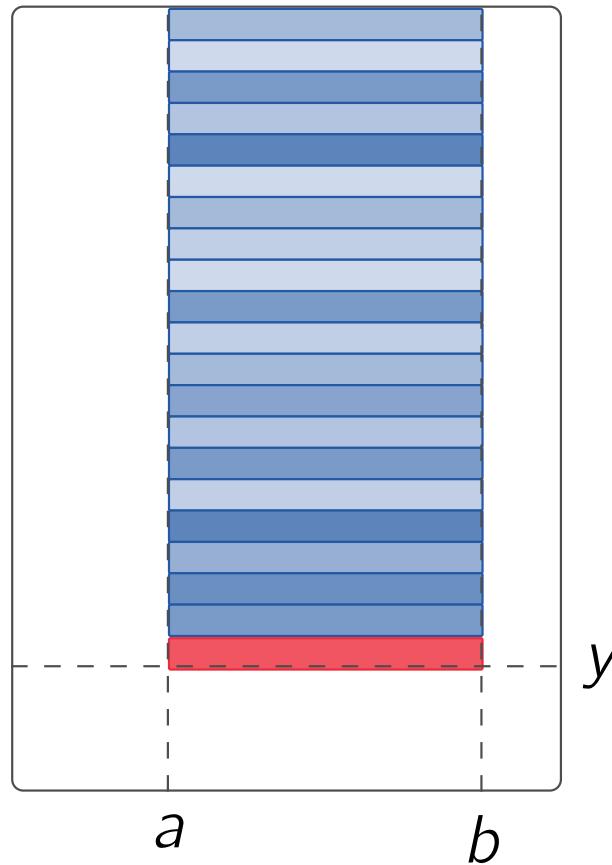
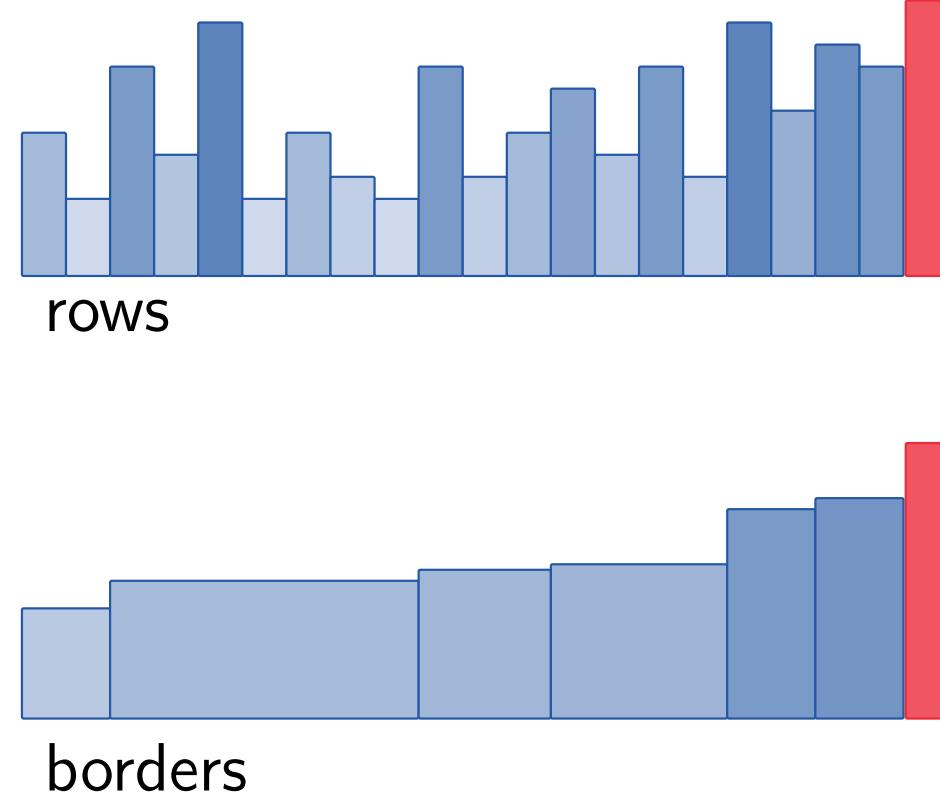
- to compute $borders(y)$ from $borders(y - 1)$
(Calders et al. 2007)

- 1 add y th row of to the borders;
- 2 **while** $dens(\text{last tile}) \leq dens(\text{2nd last tile})$ **do**
- 3 └ join last and 2nd last tiles;

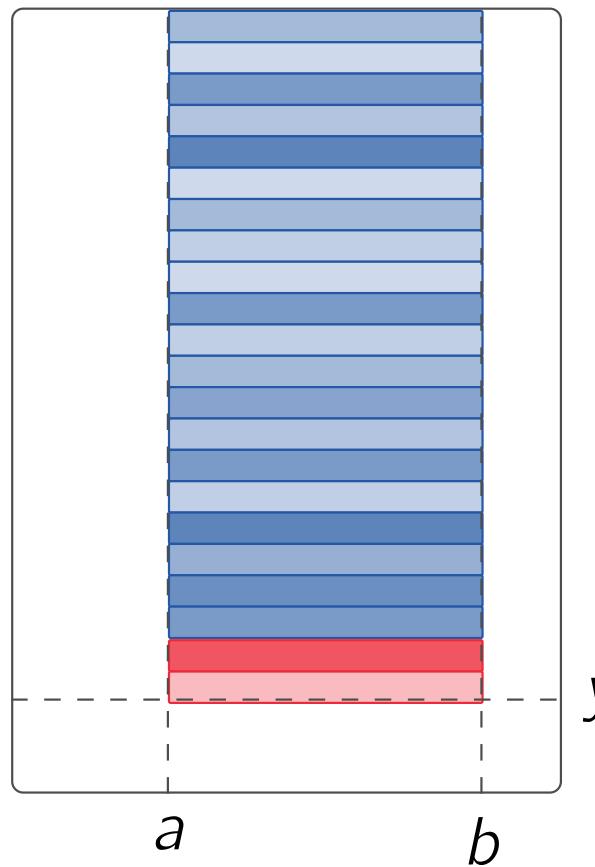
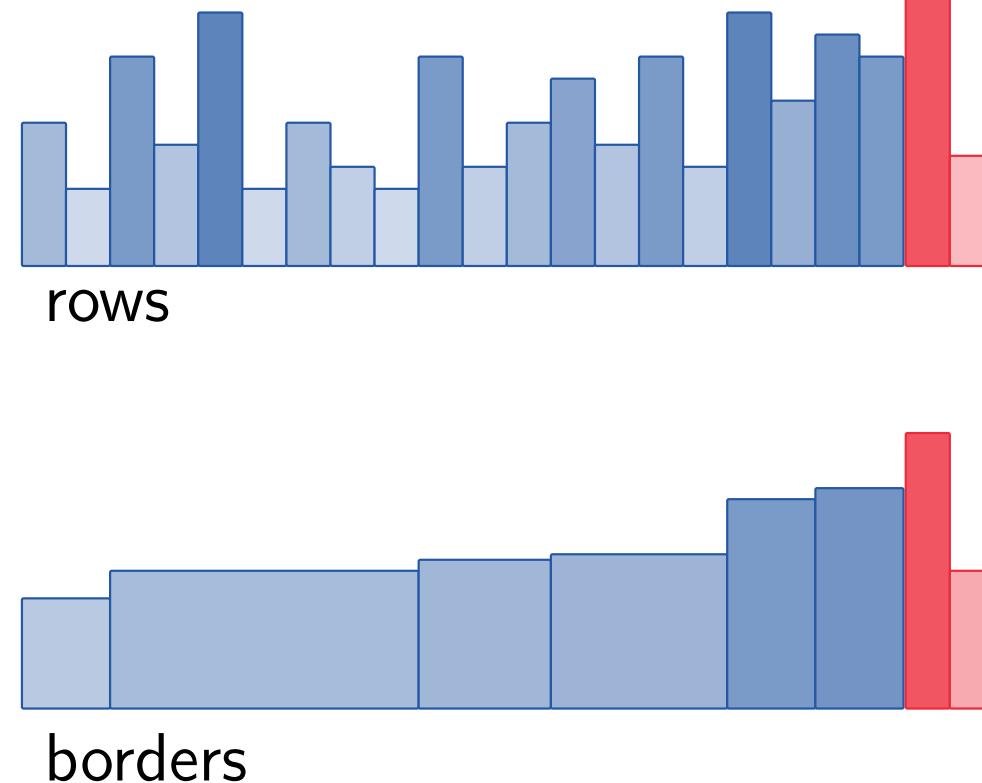
Updating borders



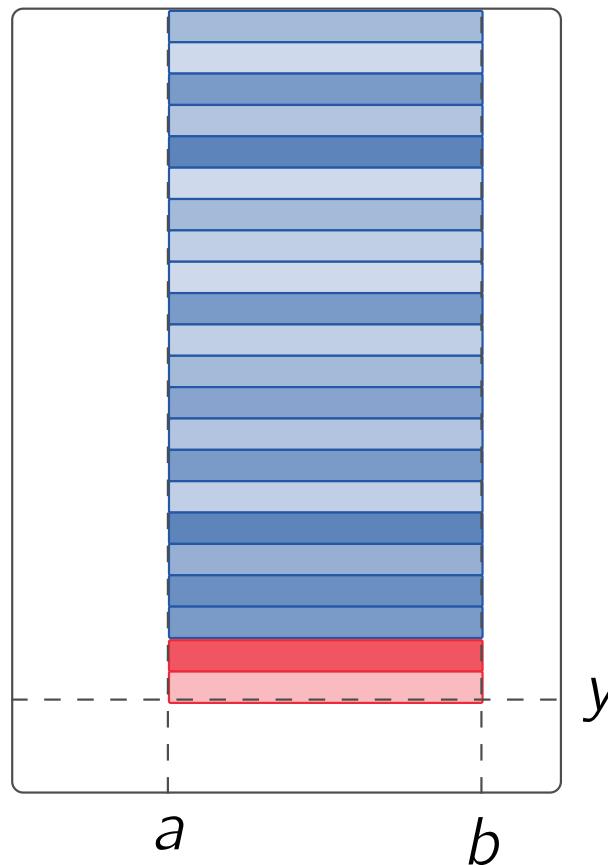
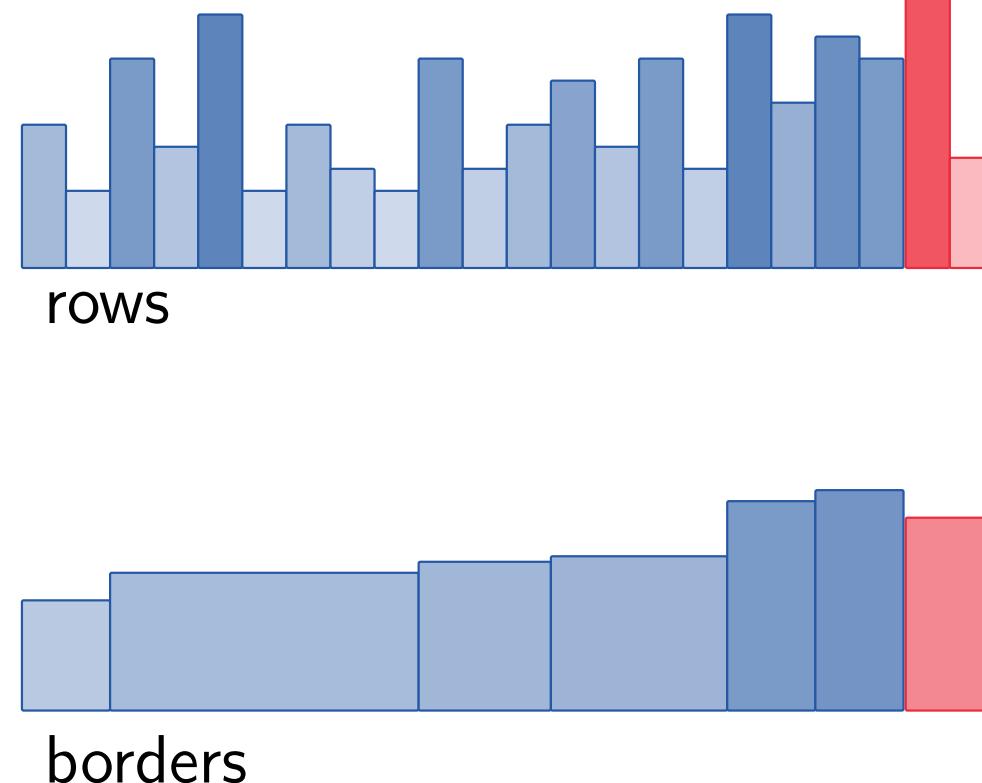
Updating borders



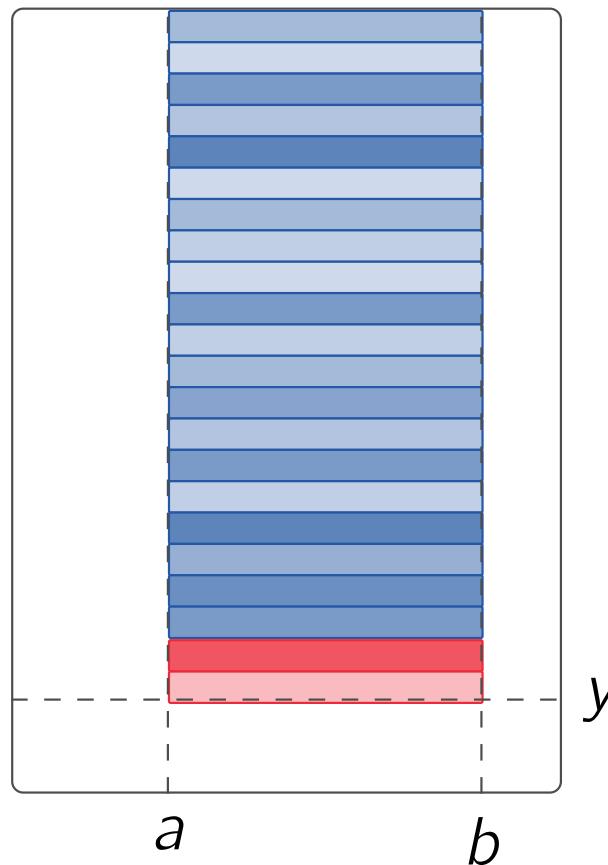
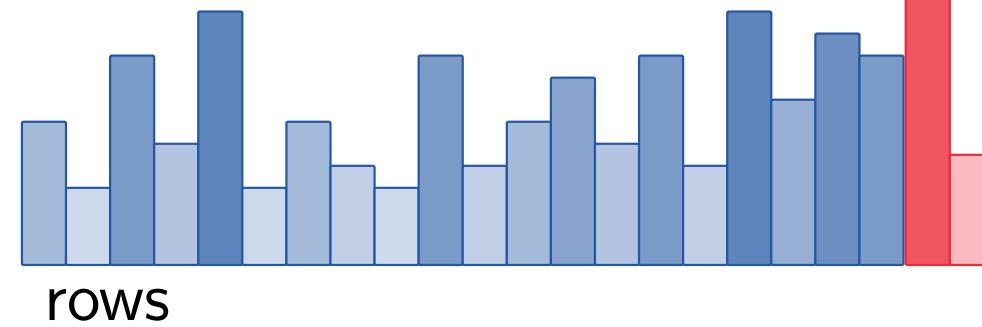
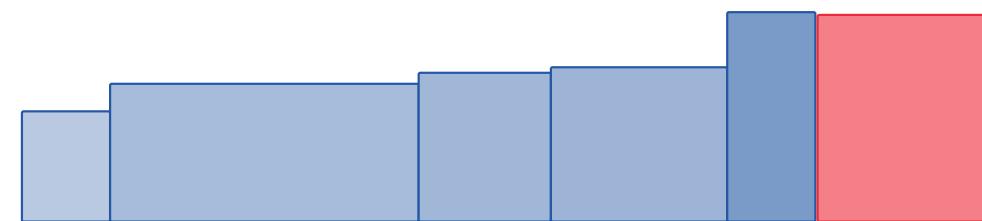
Updating borders



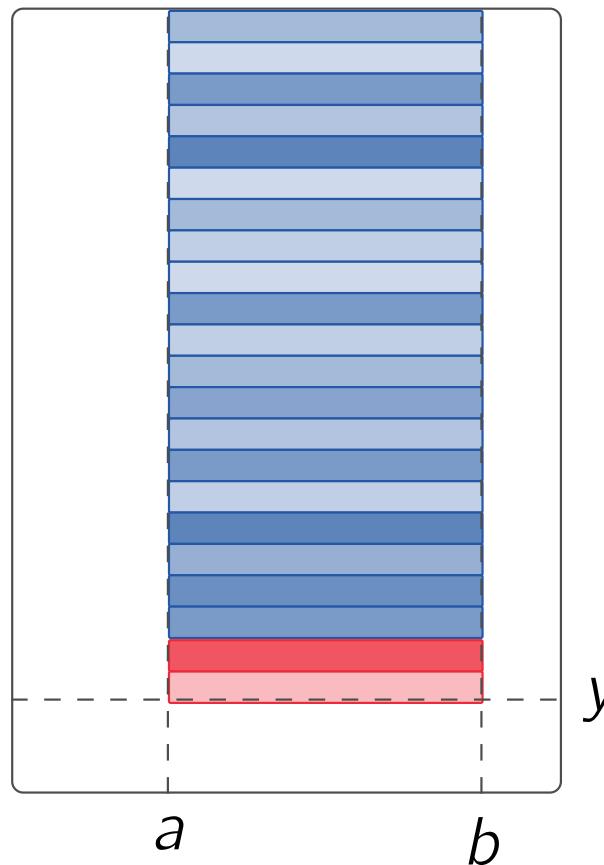
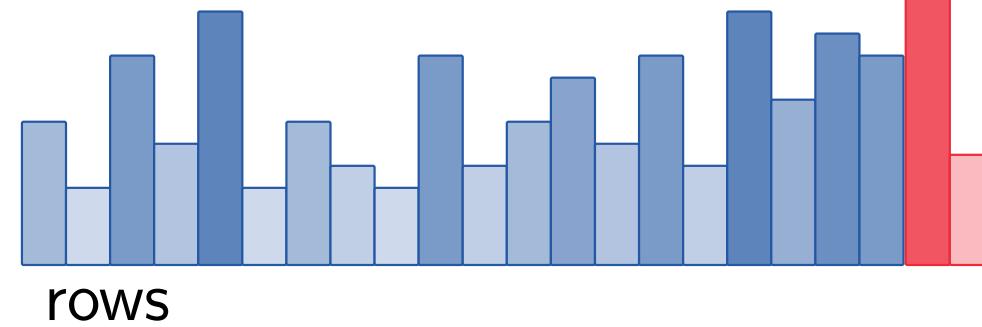
Updating borders



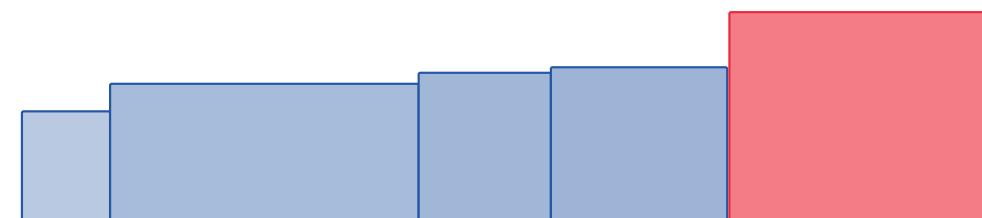
Updating borders



Updating borders

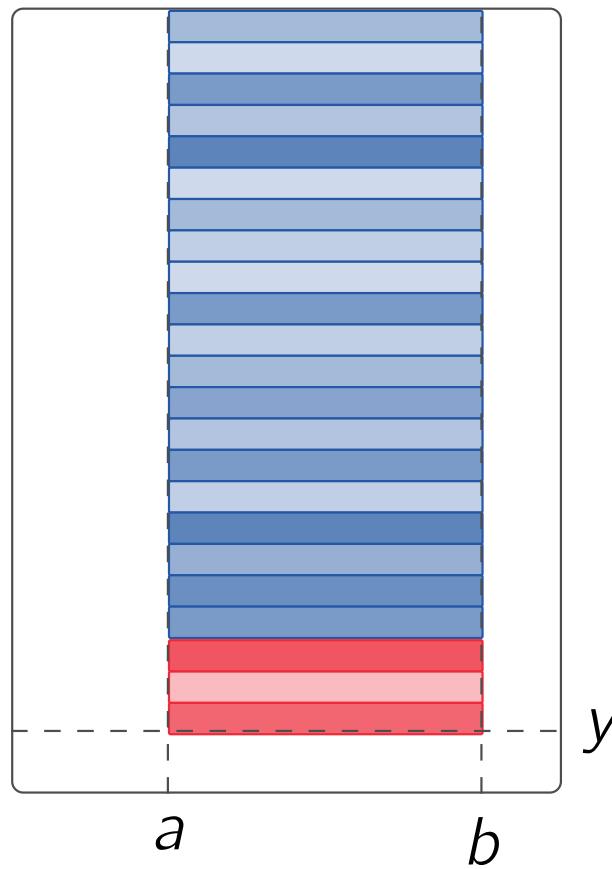
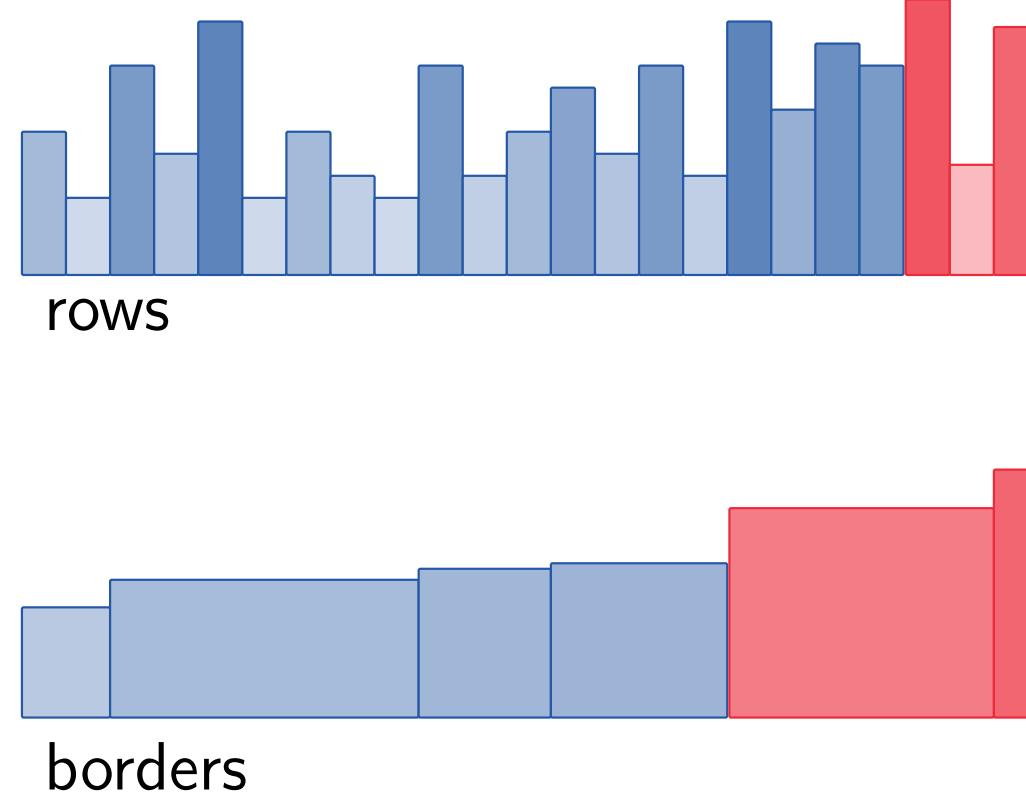


rows



borders

Updating borders



Computational Complexity

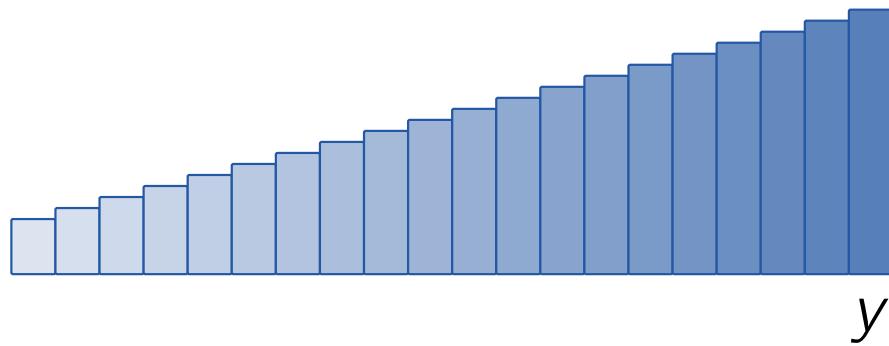
- updating $borders(y)$ takes K_y iterations
- update deletes K_y indices
- once index is deleted it will never appear again,

$$\sum_{y=1}^M K_y \leq M$$

- total computational complexity is $\Theta(M)$
- amortized computational complexity is $\Theta(1)$

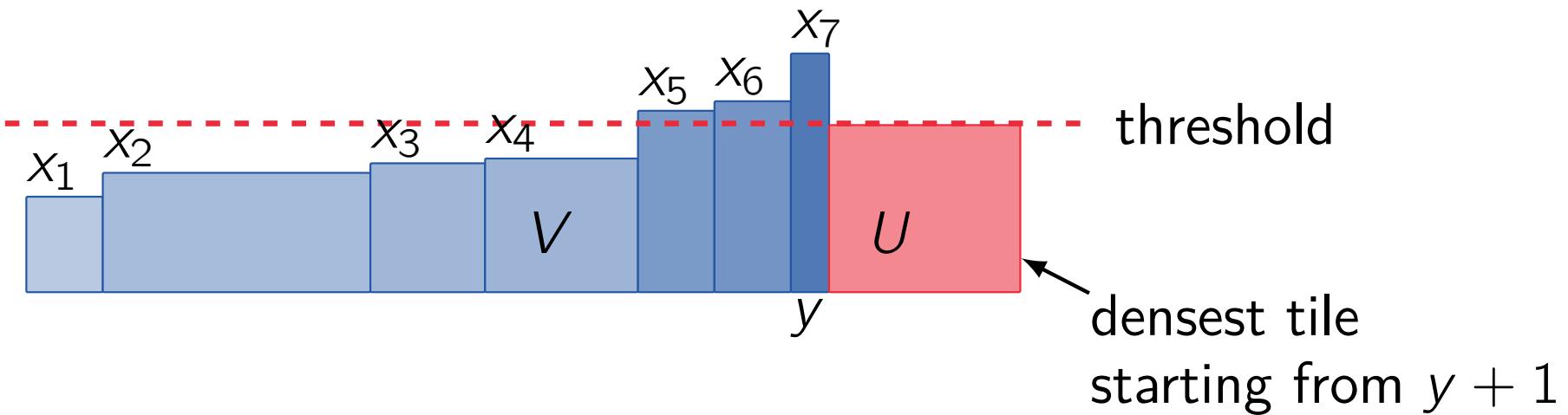
Borders are not enough

- updating borders can be done in constant time
- we can have $|borders(y)| = y$
- checking $(x, y) \times (a, b)$ for every $x \in borders(y)$ is not enough



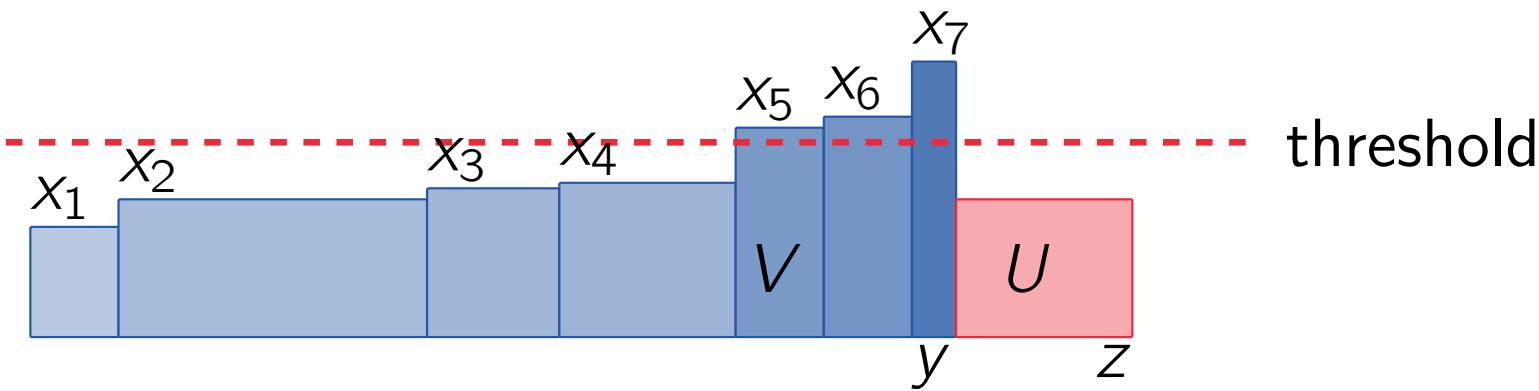
Pruning borders

- $\text{dens}(U) > \text{dens}(V)$, we can ignore x_4
- monotonicity implies that we can ignore $x_1 - x_4$



Pruning borders further

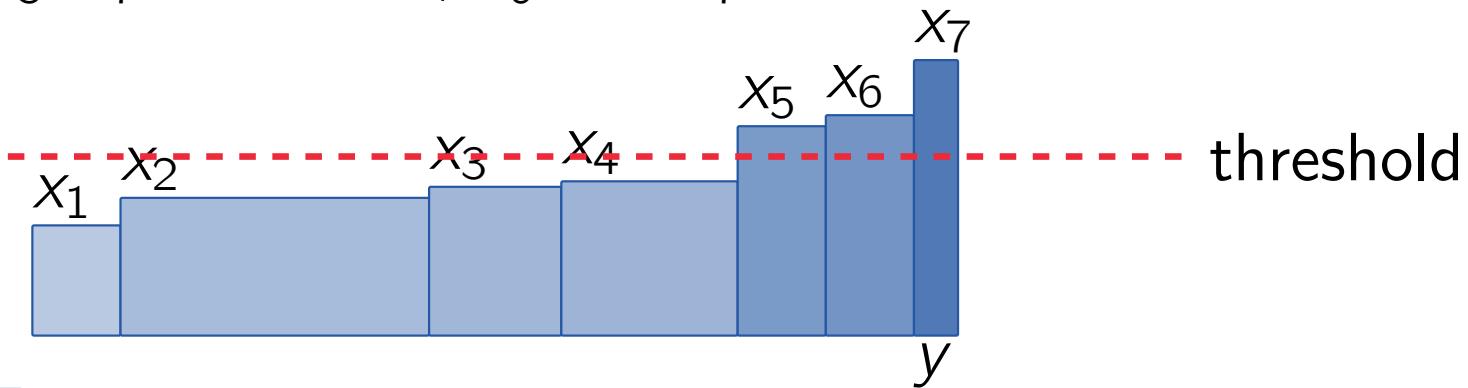
- for any U , $\text{dens}(U) < \text{dens}(V)$
- ignore x_6 (and x_7) after y



Test algorithm

```
1 foreach unmarked  $x \in \text{borders}(y)$  do
2   if if the block  $x$  is too sparse then
3     Break;
4   test  $(x, y) \times (a, b)$ ;
5   mark all but last tested borders;
```

$x_5 - x_7$ are tested, x_6 and x_7 are marked



Computational Complexity

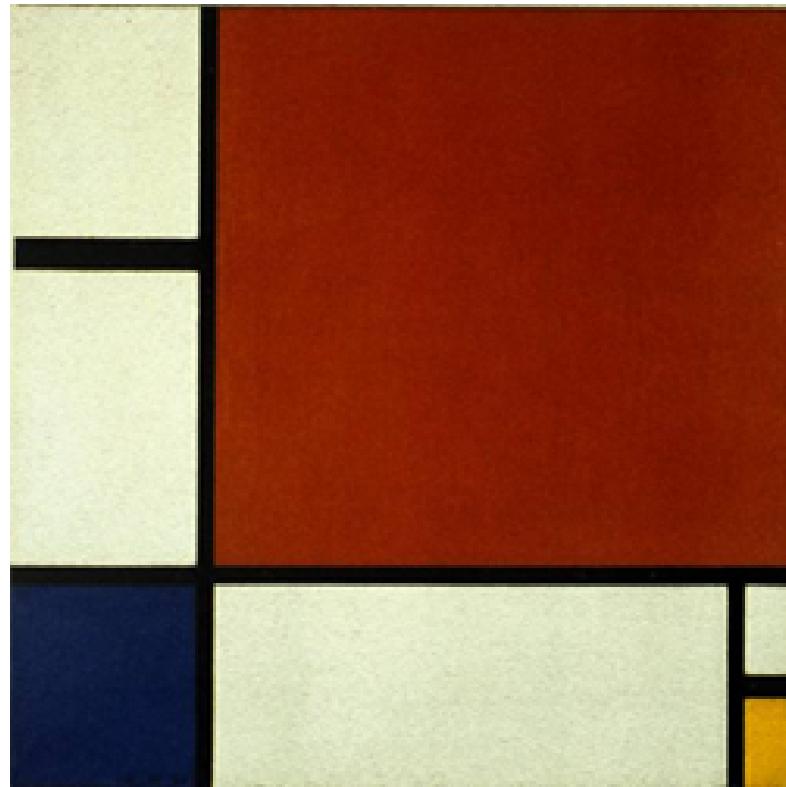
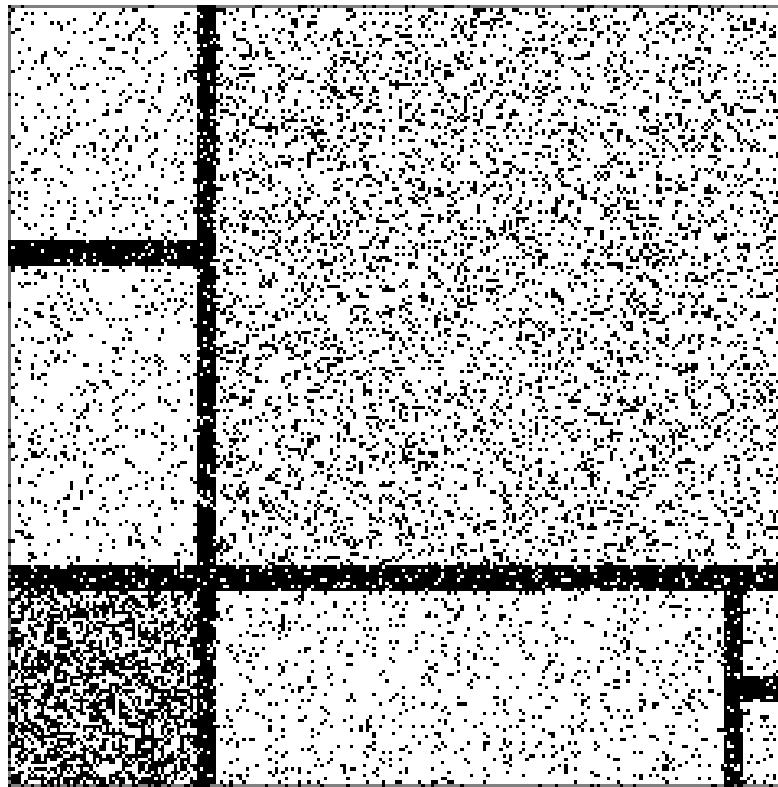
- we test L_y tiles for each y
- during this we mark $L_y - 1$ borders
- once border is marked, it will not be tested,

$$\sum_{y=1}^M L_y = M + \sum_{y=1}^M L_y - 1 \leq M + M$$

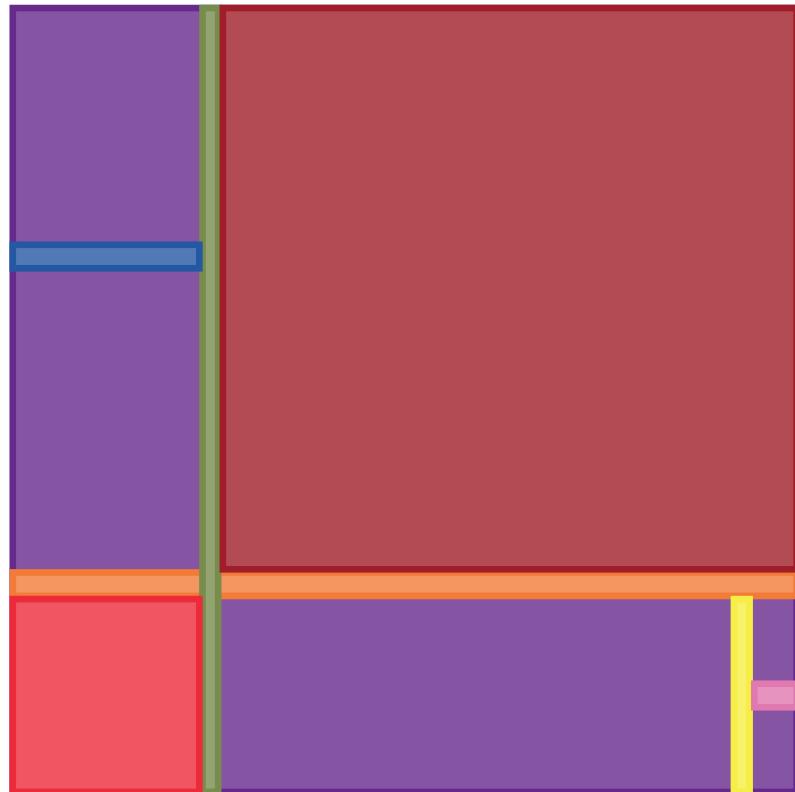
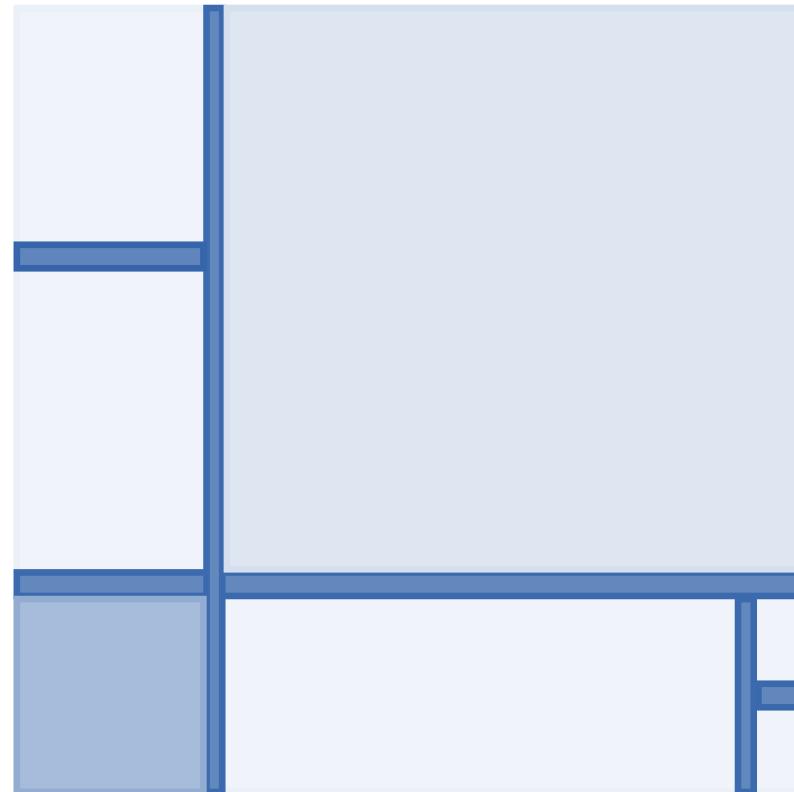
- we do $\Theta(M)$ test in total
- we do $\Theta(1)$ tests per each y

Experiments

Composition II



Composition II



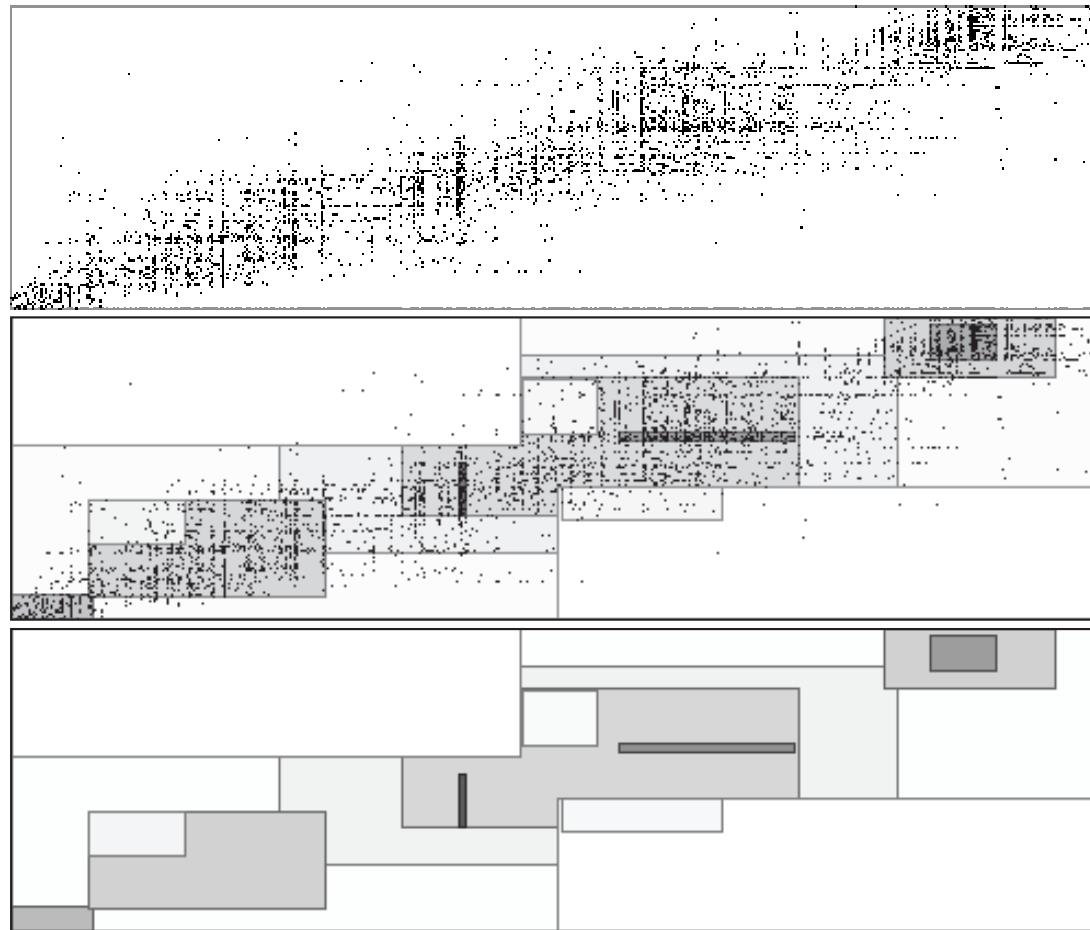
Experiments

<i>Dataset</i>	<i>M</i>	<i>N</i>	%1s	Overlap		
				<i>L</i> %	$ \mathcal{T} $	<i>time</i>
Composition	240	240	23.2	81.58	7	1m23s
Abstracts	859	541	6.6	89.54	14	27m54s
DNA Amp.	4 590	391	1.5	61.61	446	625m
Mammals	2 183	121	20.5	54.62	50	3m06s
Paleo	501	139	5.1	79.07	13	1m22s

Experiments

<i>Dataset</i>	<i>M</i>	<i>N</i>	%1s	Disjoint		
				<i>L%</i>	$ \mathcal{T} $	<i>time</i>
Composition	240	240	23.2	81.72	8	57s
Abstracts	859	541	6.6	89.59	14	16m03s
DNA Amp.	4 590	391	1.5	61.91	466	334m
Mammals	2 183	121	20.5	54.69	55	1m37s
Paleo	501	139	5.1	80.23	14	39s

Paleontological data



Conclusions

- how to discover tile trees from ordered binary data
- score a tree via a statistical model
- apply MDL principle to control model selection
- greedy heuristic for finding the tree
- finding optimal subtile in cubic time, instead of quadrupled time

That's it