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ADReMADReM

Pattern mining

has drawbacks
Pattern set mining

I Discovering all patterns
I Fulfilling constraints

, but too many

I Potentially interesting

, but redundant

I Discovering high-quality set of patterns
I Small
I Useful

I Identify the best set of patterns
I Together describe the data best
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ADReMADReM

MDL approach to pattern set mining
(Siebes et al 2006 / Vreeken et al 2011)

Minimum Description Length principle
Given a set of models M, the best model is

argmin
M∈M

L(M) + L(D | M)

MDL for pattern set mining

I Model = set of patterns
I Lossless compression of the data

I Properties
I Non-redundant
I Not overly simple
I Not overly complex
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ADReMADReM
How to mine the optimal code table?

I Easier said than done

I The number of possible code tables is huge
I Exponential in the number of candidate itemsets

I No useful structure to exploit

I Hence, we resort to heuristics
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KRIMP
(Siebes et al 2006 / Vreeken et al 2011)

KRIMP

   add to
code table

compress database

accept /
reject  

select pattern

MDL
elbatedoc

Database

Code table

elbatedoc

Many many patterns

Standard two phase approach

has drawbacks

1. Mining candidate patterns

is expensive

I Lower support threshold correspond to better results
I Pattern explosion prohibits detailed analysis
I Most candidates will be rejected

2. Considering candidates once in a fixed order

is suboptimal

I Rejecting candidates that could be useful later on
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ADReMADReM
Maximise compression locally

I Select the best addition out of all candidates

is infeasible
I Reordering all candidates means recompressing database

I Converging to better compression

takes 2 months
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ADReMADReM
Greedily construct code table bottom-up

I Start with code table containing only singletons

I Optimise current code table locally

I Consider all pairwise combinations of itemsets in code table
I Add candidate with highest gain in total compression
I Remove code table elements that no longer contribute

I Continue to refine current code table

, or stop
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ADReMADReM
Greedily construct code table bottom-up

I Selecting the candidate pair with highest gain

is expensive
I Need to compress database for each candidate

I Converging quickly to better compression

takes 1 week
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ADReMADReM
Accurate and efficient heuristic to estimate gain

I Calculate gain through usage counts of code pairs
I Disregard effects on usage of other codes

I Use branch-and-bound to find highest estimated gain
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ADReMADReM
SLIM vs. KRIMP: setup

I Use wide range of benchmark and real datasets

I Limit processing time to 24 hours

I For KRIMP, mine itemsets with lowest feasible minsup
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ADReMADReM

Better compression
comparing results after at most computing 1 day

I High difference

→ mine at lower minsup threshold
I Impossible to mine all of those

, need only a few good ones
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ADReMADReM

Code tables at least as characteristic
validated using classification experiment

I Split data and build code table per class
I Assign class label based on encoded length
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SLIM vs. KRIMP: highlights

I Describing data more succinct

I Providing high-quality descriptions

I Instantiating fewer candidate patterns

I Converging faster

I most time is invested in tail of convergence
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SLIM: Directly Mining Descriptive Patterns

SLIM

   add to
code table

accept /
reject  MDL

Database Code table

elbatedoc

elbatedoc

generate
candidates

select pattern

compress
database

I Iteratively refining current description of the data
I Reconsidering candidates providing highest estimated gain

I Any-time & parameter-free

I Providing detail only when necessary
I Feasible to analyse large and dense data in more detail
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ADReMADReM
For implementation and further reading

K. Smets & J. Vreeken.
SLIM: Directly Mining Descriptive Patterns.
Proceedings of the SIAM International Conference on Data
Mining (SDM), SIAM, 2012.
Implementation available at http://adrem.ua.ac.be/slim.

J. Vreeken, M. van Leeuwen & A. Siebes.
KRIMP: Mining Itemsets that Compress.
Data Mining and Knowledge Discovery, 23(1):169–214,
Springer, 2011.
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