SLIM: Directly Mining Descriptive Patterns

Koen Smets Jilles Vreeken

SDM12

Universiteit @
Antwerpen ABDReM

—

@ Pattern mining

» Discovering all patterns

» Fulfilling constraints
» Potentially interesting

@ Pattern mining has drawbacks

» Discovering all patterns

» Fulfilling constraints, but too many
» Potentially interesting, but redundant

@ Patternmining has drawbacks

Pattern set mining

» Discovering all patterns

» Fulfilling constraints, but too many
» Potentially interesting, but redundant

» Discovering high-quality set of patterns

» Small
» Useful

@ Patternmining has drawbacks

Pattern set mining

» Discovering all patterns

» Fulfilling constraints, but too many
» Potentially interesting, but redundant

» Discovering high-quality set of patterns

» Small
» Useful

» |dentify the best set of patterns
» Together describe the data best

—

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

Minimum Description Length principle
Given a set of models M, the best model is

argmin L(M) + L(D | M)
MeMm

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

Minimum Description Length principle
Given a set of models M, the best model is

argmin L(M) + L(D | M)
MeMm

MDL for pattern set mining

» Model = set of patterns
» Lossless compression of the data

—

MDL approach to pattern set mining
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Minimum Description Length principle
Given a set of models M, the best model is

argmin L(M) + L(D | M)
MeMm

MDL for pattern set mining

» Model = set of patterns
» Lossless compression of the data

» Properties

» Non-redundant
» Not overly simple
» Not overly complex

—

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

Transaction database

> (> | >
@ (m| (| |m
(@]

OO0 |0

@| (@

I

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

Code table
Itemset | Code Usage
A B C [0.85bits 5
2
217bits 2
- 0
Transaction database
B C

@| (@
(@]

@ MDL approach to pattern set mining

(Siebes et al 2006 / Vreeken et al 2011)

Code table
Itemset | Code Usage
A B C [os8svits 5
@) 2
[2.17bits 2
- 0
Transaction database Covered database Encoded database
A B =
-
-
=
-
I— —
—
—

How to mine the optimal code table?

ADRel

How to mine the optimal code table?

ADRel

» Easier said than done

How to mine the optimal code table?

ADRel

» Easier said than done

» The number of possible code tables is huge
» Exponential in the number of candidate itemsets

How to mine the optimal code table?

ADRel

» Easier said than done

» The number of possible code tables is huge
» Exponential in the number of candidate itemsets

» No useful structure to exploit

How to mine the optimal code table?

ADRel

Easier said than done

v

v

The number of possible code tables is huge
» Exponential in the number of candidate itemsets

No useful structure to exploit

v

v

Hence, we resort to heuristics

—

@ KRIMP
ADRe (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
E

MDL
e é Code table
E—
~_

compress database

il
|

=

(@
T

U

(e
(@

(@

Many many patterns

Standard two phase approach

1. Mining candidate patterns

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRe (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— E

e Code table
—_—

compress database

il
|

=

(@
T

U

(e
(@

(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRe (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— E

e Code table
—_—

compress database

il
|

=

(@
T

U

(e
(@

(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— E}

e Code table
—

compress database

il
|

(=

\.'((((((((((0

I

(@

U

(e
(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive
» Lower support threshold correspond to better results

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— E}

e Code table
—

compress database

il
|

(=

\.'((((((((((0

I

(@

U

(e
(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive
» Lower support threshold correspond to better results
» Pattern explosion prohibits detailed analysis

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— é}

B Code table
—

compress database

il
|

(=

\.'((((((((((0

I

(@

U

(e
(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive

» Lower support threshold correspond to better results
» Pattern explosion prohibits detailed analysis
» Most candidates will be rejected

2. Considering candidates once in a fixed order

—

@ KRIMP
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— é}

B Code table
—

compress database

il
|

(=

\.'((((((((((0

I

(@

U

(e
(@

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive

» Lower support threshold correspond to better results
» Pattern explosion prohibits detailed analysis
» Most candidates will be rejected

2. Considering candidates once in a fixed order is suboptimal

—

@ KRIMP
ADRel (Siebes et al 2006 / Vreeken et al 2011)

Database
KRrimp select pattern

accept / add to
reject code table
MDL —_— é

B Code table
—

compress database

il
|

(©=

(@

\.'((((((((((0

(@

I

0

({Iree

Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive
» Lower support threshold correspond to better results
» Pattern explosion prohibits detailed analysis
» Most candidates will be rejected
2. Considering candidates once in a fixed order is suboptimal
» Rejecting candidates that could be useful later on

—

KRIMP — SLIM

ADR

Database

-

KRriMP select pattern

- @
accept / add to
reject code table
MDL —

ﬂ Code table

compress database

©=

0
(@

i

(@
(i

(e
((e:

Many many patterns

—

KRIMP — SLIM

ADR

Database
y SLim select pattern

accept / add to
reject code table
MDL —

ﬂ Code table

compress database

i

<i-

whdaRi=iaaiig patterns

—

@ Maximise compression locally

» Select the best addition out of all candidates

@ Maximise compression locally

» Select the best addition out of all candidates

» Converging quickly to better compression

@ Maximise compression locally
» Select the best addition out of all candidates

» Converging quickly to better compression

100 ‘ ‘ Adult ‘ :
— Krawmp
90} — Krivp ||
= 80
=2
5 70
7
3
2 60
8
g o
£
5}
40
30
20 — L L — L L -
500 1000 1500 2000 2500 3000

Number of iterations

@ Maximise compression locally

» Select the best addition out of all candidates is infeasible
» Reordering all candidates means recompressing database
» Converging guiekly to better compression takes 2 months

100 ‘ ‘ Adult ‘ :
— Krawmp
90} — Krivp ||

80

70

60

50

Relative compression (L%)

40

301

20

500 1000 1500 2000 2500 3000
Number of iterations

Greedily construct code table bottom-up

» Start with code table containing only singletons

ADRel

Code table Covered database Encoded database
Itemset Code I:]I:I_
(— [
—1 I
I I
I
[—
1
—1

ADRel

» Optimise current code table locally

Itemset

Greedily construct code table bottom-up

» Start with code table containing only singletons

Code table

Code
1
—1
[

(@)

oV

[0}

red database

Encoded database
I
I
I
I
I
[—

1
—1

@ Greedily construct code table bottom-up

» Start with code table containing only singletons

» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table

Code table
Itemset Code
1
—1
[

(@)

oV

[0}

red database

Encoded database
I
I
I
I
I
[—

1
—1

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression

Code table Covered database Encoded database
Itemset Code I:]I:I_
— C I
—1 I
I I
I
[—
1
—1

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression

Code table Covered database Encoded database
ttemset | code -
—] CaA_B) [.
—— &G ® -
| [.
| [.
1
1
(|

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression

» Continue to refine current code table

Code table Covered database Encoded database
ttemset | code -
—] CaA_B) [.
—— &G ® -
| [.
| [.
1
1
(|

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression

» Continue to refine current code table

Code table Covered database Encoded database
Itemset Code m D
- (a8 o |:1
1 1
[c |
[|

|

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression
» Remove code table elements that no longer contribute

» Continue to refine current code table

Code table Covered database Encoded database
Itemset Code m D
- (a8 o |:1
1 1
[c (|
[(|

|

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression
» Remove code table elements that no longer contribute

» Continue to refine current code table

Code table Covered database Encoded database
Itemset ‘ Code

B C]

> [>
| |O| |2
(@]

>
of [of o

(I
(I
— (I
I (I
(I

aae>
>| | >

| |

(9]

IHE

@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression
» Remove code table elements that no longer contribute

» Continue to refine current code table, or stop

Code table Covered database Encoded database
Itemset ‘ Code

B C]

> [>
| |O| |2
(@]

>
of [of o

(I
(I
— (I
I (I
(I

aae>
>| | >

| |

(9]

IHE

@ Greedily construct code table bottom-up

» Selecting the candidate pair with highest gain

» Converging quickly to better compression

Relative compression (L%)

100

90

80

70

60

50

40

301

20

Adylt

— SLam
— KRrawmP | |
— KRimP

500

1000 1500 2000 2500 3000
Number of iterations

@ Greedily construct code table bottom-up

» Selecting the candidate pair with highest gain is expensive
» Need to compress database for each candidate

» Converging guiekly to better compression takes 1 week

Relative compression (L%)

100

90

80

70

60

50

40

301

20

Adult
— SLAM
— KRrawmP | |
— KRIMP
500 1000 1500 2000 2500 3000

Number of iterations

Accurate and efficient heuristic to estimate gain

ADRel

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

Accurate and efficient heuristic to estimate gain

ADRel

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

DNA amplification

3500
: x rejected candidate .
3000 o accepted candidate Be.-"
2500
z : o
B 2000 : .-‘UG
) : :
IS
<
=1
e
*é
€3] o g o
o
8 °
G
Coo P o °
[}
~100 0 100

000 500 0 500 1000 1500 2000 2500 3000 3500
Exact AL (in bits)

~1009

ADRel

Accurate and efficient heuristic to estimate gain

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

Relative compression (L%)

100

90

80

70

60

50

40

301

20

Adult
— SuM
— Stam]
— KRAMP
— KRIMP
500 1000 1500 2000 2500 3000

Number of iterations

ADRel

Accurate and efficient heuristic to estimate gain

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

» Use branch-and-bound to find highest estimated gain

Relative compression (L%)

100

90

80

70

60

50

40

301

20

Adult
— SuM
— Stam]
— KRAMP
— KRIMP
500 1000 1500 2000 2500 3000

Number of iterations

W2/ Accurate and efficient heuristic to estimate gain
» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

» Use branch-and-bound to find highest estimated gain

100 Adult
— SLiM
90t — Stam]
— KRAMP
— Krivp
< 80]
=2
5 70
7
8
2 60
é
£ w0
k=l
=]
40
20 . . L . . _
500 1000 1500 2000 2500 3000

Number of iterations

p

SLIM vs. KRIMP: setup

ADRel

» Use wide range of benchmark and real datasets
» Limit processing time to 24 hours

» For KRIMP, mine itemsets with lowest feasible minsup

A

comparing results after at most computing 1 day

Better compression

AE)Re;

El Krimp

N SuM

80

0
10
0

40
30
2

70
60
50

(9%7V) uoIssaIduon dAIJR[aI UI dDUDIJI(]

comparing results after at most computing 1 day

Better compression

AE)Re;

» High difference

El Krivp

N SuM

80

0
10
0

40
30
2

70
60
50

(9%77V) uoIssaIdurod dAIJR[aI UI dDUDIHI(]

comparing results after at most computing 1 day

Better compression

AE)Re;

» High difference — mine at lower minsup threshold

El Krivp

N SuM

80

0
10
0

40
30
2

70
60
50

(9%7V) uorssaIdurod dAIJR[aI UI dDUDIJI(]

comparing results after at most computing 1 day

Better compression

AE)Re;

» High difference — mine at lower minsup threshold

» Impossible to mine all of those

El Krivp

N SuM

80

0
10
0

40
30
2

70
60
50

(9%77V) uoIssaIdurod dAIJR[aI UI dDUDIHI(]

comparing results after at most computing 1 day

Better compression

AE)Re;

» High difference — mine at lower minsup threshold

» Impossible to mine all of those, need only a few good ones

El Krivp

N SuM

80

0
10
0

40
30
2

70
60
50

(9%77V) uoIssaIdurod dAIJR[aI UI dDUDIHI(]

Code tables at least as characteristic
ADRel validated using classification experiment

Code tables at least as characteristic
ADRel validated using classification experiment

» Split data and build code table per class

Code tables at least as characteristic
ADBRe validated using classification experiment

» Split data and build code table per class
» Assign class label based on encoded length

Code tables at least as characteristic
ADRel validated using classification experiment

» Split data and build code table per class
» Assign class label based on encoded length

100

90

80

70

Accuracy (%)

60

N Suim
El Krivp

SLIM vs. KRIMP: highlights

ADRel

» Describing data more succinct

SLIM vs. KRIMP: highlights

ADRel

» Describing data more succinct

» Providing high-quality descriptions

SLIM vs. KRIMP: highlights

ADRel

» Describing data more succinct

» Providing high-quality descriptions

» Instantiating fewer candidate patterns

SLIM vs. KRIMP: highlights

ADRel

v

Describing data more succinct

v

Providing high-quality descriptions

v

Instantiating fewer candidate patterns

v

Converging faster

A

SLIM vs. KRIMP: highlights

ADRel

v

Describing data more succinct

v

Providing high-quality descriptions

v

Instantiating fewer candidate patterns

v

Converging faster
» most time is invested in tail of convergence

A

SLiM: Directly Mining Descriptive Patterns

ADRel

Sum

=
compress accept /
database <MDL> reject

Database add to / \cgenerate Code table

code table andidates

o_/%

select pattern

» lteratively refining current description of the data
» Reconsidering candidates providing highest estimated gain

~

SLiM: Directly Mining Descriptive Patterns

ADRel

Sum

=
compress accept /
database <MDL> reject

Database add to / \cgenerate Code table

code table andidates

o_/%

select pattern

» lteratively refining current description of the data

» Reconsidering candidates providing highest estimated gain
» Any-time & parameter-free

~

SLiM: Directly Mining Descriptive Patterns

ADRel

Suim

compress accept /
database <MDL> reject

Database add to / \cgenerate Code table

code table andidates

ov%

select pattern

» lteratively refining current description of the data
» Reconsidering candidates providing highest estimated gain
» Any-time & parameter-free

» Providing detail only when necessary

» Feasible to analyse large and dense data in more detail

~

For implementation and further reading

ADRel

[1 K.Smets & J. Vreeken.
SLiM: Directly Mining Descriptive Patterns.
Proceedings of the SIAM International Conference on Data
Mining (SDM), SIAM, 2012.
Implementation available at http://adrem.ua.ac.be/slim.

[4 J. Vreeken, M. van Leeuwen & A. Siebes.
KRIMP: Mining ltemsets that Compress.
Data Mining and Knowledge Discovery, 23(1):169-214,
Springer, 2011.

~

http://adrem.ua.ac.be/slim

	Motivation
	Previous work

	Our contribution/results
	Basic ideas for implementation
	Main results

