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Pattern set mining

» Discovering all patterns

» Fulfilling constraints, but too many
» Potentially interesting, but redundant

» Discovering high-quality set of patterns

» Small
» Useful

» |dentify the best set of patterns
» Together describe the data best
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Minimum Description Length principle
Given a set of models M, the best model is

argmin L(M) + L(D | M)
MeMm

MDL for pattern set mining

» Model = set of patterns
» Lossless compression of the data

» Properties

» Non-redundant
» Not overly simple
» Not overly complex
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How to mine the optimal code table?

ADRel

Easier said than done

v

v

The number of possible code tables is huge
» Exponential in the number of candidate itemsets

No useful structure to exploit

v

v

Hence, we resort to heuristics
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@ KRIMP
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Many many patterns

Standard two phase approach

1. Mining candidate patterns

2. Considering candidates once in a fixed order
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Database
KRrimp select pattern
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Many many patterns

Standard two phase approach has drawbacks

1. Mining candidate patterns is expensive
» Lower support threshold correspond to better results
» Pattern explosion prohibits detailed analysis
» Most candidates will be rejected
2. Considering candidates once in a fixed order is suboptimal
» Rejecting candidates that could be useful later on
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@ Maximise compression locally

» Select the best addition out of all candidates is infeasible
» Reordering all candidates means recompressing database
» Converging guiekly to better compression takes 2 months
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Greedily construct code table bottom-up

» Start with code table containing only singletons
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» Optimise current code table locally

Itemset
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@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression

» Continue to refine current code table
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» Start with code table containing only singletons
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@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression
» Remove code table elements that no longer contribute

» Continue to refine current code table

Code table Covered database Encoded database
Itemset ‘ Code

B C ]

> [>
| |O| |2
(@]

>
of [of o

(I
(I
— (I
I (I
(I

aae>
>| | >

| |

(9]

IHE




@ Greedily construct code table bottom-up

» Start with code table containing only singletons
» Optimise current code table locally

» Consider all pairwise combinations of itemsets in code table
» Add candidate with highest gain in total compression
» Remove code table elements that no longer contribute

» Continue to refine current code table, or stop
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@ Greedily construct code table bottom-up

» Selecting the candidate pair with highest gain

» Converging quickly to better compression
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@ Greedily construct code table bottom-up

» Selecting the candidate pair with highest gain is expensive
» Need to compress database for each candidate

» Converging guiekly to better compression takes 1 week

Relative compression (L%)

100

90

80

70

60

50

40

301

20

Adult
— SLAM
—  KRrawmP | |
—  KRIMP
500 1000 1500 2000 2500 3000

Number of iterations



Accurate and efficient heuristic to estimate gain

ADRel

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes




Accurate and efficient heuristic to estimate gain

ADRel

» Calculate gain through usage counts of code pairs
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Accurate and efficient heuristic to estimate gain

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes
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Accurate and efficient heuristic to estimate gain

» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

» Use branch-and-bound to find highest estimated gain
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W2/ Accurate and efficient heuristic to estimate gain
» Calculate gain through usage counts of code pairs
» Disregard effects on usage of other codes

» Use branch-and-bound to find highest estimated gain
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SLIM vs. KRIMP: setup

ADRel

» Use wide range of benchmark and real datasets
» Limit processing time to 24 hours

» For KRIMP, mine itemsets with lowest feasible minsup

A
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comparing results after at most computing 1 day

Better compression

AE)Re;

» High difference — mine at lower minsup threshold

» Impossible to mine all of those, need only a few good ones
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v

Describing data more succinct

v

Providing high-quality descriptions

v

Instantiating fewer candidate patterns

v

Converging faster
» most time is invested in tail of convergence
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SLiM: Directly Mining Descriptive Patterns

ADRel

Suim

compress accept /
database <MDL> reject

Database add to / \cgenerate Code table

code table andidates

ov%

select pattern

» lteratively refining current description of the data
» Reconsidering candidates providing highest estimated gain
» Any-time & parameter-free

» Providing detail only when necessary

» Feasible to analyse large and dense data in more detail
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For implementation and further reading

ADRel

[1 K.Smets & J. Vreeken.
SLiM: Directly Mining Descriptive Patterns.
Proceedings of the SIAM International Conference on Data
Mining (SDM), SIAM, 2012.
Implementation available at http://adrem.ua.ac.be/slim.

[4 J. Vreeken, M. van Leeuwen & A. Siebes.
KRIMP: Mining ltemsets that Compress.
Data Mining and Knowledge Discovery, 23(1):169-214,
Springer, 2011.
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